
Dynkin diagrams of hyperbolic Kac–Moody superalgebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 2087

(http://iopscience.iop.org/0305-4470/36/8/307)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 2087–2097 PII: S0305-4470(03)36614-4

Dynkin diagrams of hyperbolic Kac–Moody
superalgebras

L K Tripathy1, B Das2 and K C Pati1

1 Department of Physics, Khallikote College, Berhampur, Orissa, 760 001, India
2 Department of Physics, BA College, Berhampur, Orissa, 760 001, India

E-mail: kcpati@rediffmail.com

Received 3 May 2002, in final form 25 November 2002
Published 12 February 2003
Online at stacks.iop.org/JPhysA/36/2087

Abstract
Hyperbolic Kac–Moody superalgebras are classified in terms of their Dynkin
diagrams. These types of Kac–Moody superalgebras are those whose diagrams
revert to either that of simple or affine superalgebras upon deletion of one of
the vertices. It is found that the maximum rank of this type of algebra is 6.

PACS numbers: 02.10.−v, 02.20.Qs

1. Introduction

Recently, we have seen that hyperbolic Kac–Moody algebras [1–4] could account for a variety
of problems in the realms of string theory [5] (hyperbolic Kac–Moody algebra E10), duality
properties of supersymmetric gauge theories [6] and two-dimensional field theories [7]. So
it is natural to visualize, evaluate and interpret the possible consequences of supersymmetric
extension of these algebras. The constructs so generated are the hyperbolic Kac–Moody
superalgebras, which can be readily transcribed for the purpose of application to both bosonic
and fermionic sectors in a systematic and consistent framework. Our aim in this paper is to
take a simple step towards the characterization of such algebras by enumerating their Dynkin
diagrams, quite similar to the characterization of hyperbolic Kac–Moody algebra as done by
Saclioglu [8].

The procedure for constructing Dynkin diagrams of such algebras is quite close to
that of hyperbolic Kac–Moody algebras. But in contrast to the case of hyperbolic Kac–
Moody algebra, where there is only one simple root system for each individual algebra,
the superalgebraic structure is endowed with several inequivalent root systems, due to the
presence of both even and odd roots. This leads to a non-trivial amount of work and a
surprising proliferation of cases (we properly acknowledge Saclioglu for the use of these
words). However, in this paper we have given the Dynkin diagrams of such algebras in
distinguished bases. A distinguished basis means there is the presence of a single odd root
in the simple root system of the corresponding simple Lie superalgebra and at most two odd
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roots in the simple root systems of the corresponding affine Kac–Moody superalgebras from
which the hyperbolic superalgebras are constructed. It is interesting to note that the maximum
allowed rank of hyperbolic Kac–Moody superalgebra is 6 and there is no such algebra of
rank higher than 6. Furthermore, although there are infinitely many hyperbolic Kac–Moody
superalgebras of rank 2, the number of these algebras of rank from 3 to 6 is necessarily finite.

This paper is organized as follows. In section 2, we briefly define the hyperbolic and
strictly hyperbolic Dynkin diagrams and give a hint for constructing the Dynkin diagrams
of hyperbolic Kac–Moody superalgebras. In section 3, we give all the Dynkin diagrams of
hyperbolic Kac–Moody superalgebras in distinguished bases and we also show how these
Dynkin diagrams can be used to determine the regular sub-superalgebras of a given algebra.
Section 4 contains a few concluding remarks.

2. Kac–Moody superalgebra and Dynkin diagrams

A Kac–Moody superalgebra G of rank r can be characterized by a Cartan matrix aij and a subset
τ ⊂ I ≡ {1, 2, . . . , r} that identifies the odd generators. Unless G is an ordinary Lie algebra, in
which case τ = ϕ, the set τ can actually be taken to consist of only one element in distinguished
basis. Let [,] stand for the graded product defined by [x, y] = −(−1)degx deg y[y, x] and
[x, [y, z]] = [[x, y], z] + (−1)deg x deg y[y, [z, x]] and we denote as usual by (ad x) the adjoint
operation (ad x) y = [x, y]. The algebra G can be constructed from the 3r generators, êi , f̂ i

and ĥi , i ∈ I which satisfy the relations,

[êi , f̂ i] = δij ĥi [ĥi, ĥj ] = 0

[ĥi, êj ] = aij êj [ĥi, f̂ j ] = −aij f̂ j

(ad êi )
1−âij êj = 0 (ad f̂ i)

1−âij f̂ j = 0 i �= j

(2.1)

with

deg ĥi = 0 deg êi = deg f̂ i = 0 i /∈ τ

deg êi = deg f̂ i = 1 i ∈ τ

âij is the matrix which is obtained from the non-symmetric Cartan matrix aij by substituting
–1 for the strictly positive elements in the rows with ‘0’ on the diagonal entry. In the case
of Lie algebras the matrices aij and âij coincide and equation (2.1) reduces to the standard
Serre relations. However, in the case of superalgebra the description given by the above Serre
relation leads in general to a larger superalgebra than the superalgebra under consideration.
So it is necessary to write supplementary relations involving more than two generators, in
order to quotient the larger superalgebra and to recover the original one. These supplementary
conditions appear when we deal with odd roots of zero length (i.e. αii = 0). The supplementary
conditions depend on the different types of vertices which appear in the Dynkin diagrams. For
example, in the case of A (m, n), if αi is an odd root then the supplementary condition,

[[[êi−1, êi], êi+1], êi] = 0 (2.1a)

is necessary. Similarly different types of relations hold good for different types of vertices,
the details of which can be found in [13, 15].

In equation (2.1) the matrix αij is symmetrizable and indecomposable. An
indecomposable Cartan matrix A is that which cannot be reduced to a block diagonal form
and a symmetrizable GCM is that which can be expressed as A = DG, where D is a diagonal
matrix and G is a symmetric matrix with entries of D and G are rational numbers in general.
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Now, we can think of the symmetric matrix Gij as a metric on a root space and we make the
following identification,

Dij = 2

(αi, αi)
δij where αi is an even simple root, i.e. i /∈ τ, or a non-degenerate

odd root, i.e. i ∈ τ, but 2αi is also a root
= δij where αi is a degenerate odd root, i.e. i ∈ τ, and (αi, αi ) = 0

and

Gij = (αi, αj ). (2.2)

To each simple root system of the algebras a Dynkin diagram can be associated according
to the following rules:

(i) To each simple bosonic root we associate a white dot ‘◦’, to each simple fermionic one
αi a block dot ‘•’ if aii �= 0 (i.e. 2αi ∈ �0) and a grey dot ‘⊗’ if aii = 0.
The ith and jth dots will be joined by ηij lines with

ηij = 2|aij |
min(|aij |, |aij |) if aii . ajj �= 0

ηij = 2|aij |
min akk �= 0|akk| if aii �= 0 ajj = 0

ηij = |aij | if aii = ajj = 0.

(2.3)

(ii) We add an arrow on the lines connecting the ith and jth dots when ηij > 1 pointing from i
and j if aii . ajj �= 0 and |ajj | or if aii = 0, ajj �= 0, |ajj | < 2 and pointing from j to i if
aii = 0, ajj �= 0, |ajj | > 2.

Given the class of symmetrizable GCM and their associated algebras we consider three
types of superalgebras: simple Lie superalgebras, affine Kac–Moody algebras and hyperbolic
Kac–Moody superalgebras. The first two types of superalgebras have already been classified
and studied in detail. For the sake of completeness we first give the list of different families
of finite-dimensional simple Lie superalgebras:

(I) A(m, n) or sl (m + 1, n +1)
(II) B(m, n) or osp (2m + 1, 2n) with m �= 0

(III) B(0, n) or osp (1, 2n)
(IV) D(m, n) or osp (2m, 2n) with m �= 1
(V) D(2, 1; α)

(VI) F(4)
(VII) G(3).

Similarly, the affine Kac–Moody superalgebras are given by

(i) sl(1) (m, n)
(ii) osp(1) (2m + 1, 2n)

(iii) osp(1) (1, 2n)
(iv) osp(1) (2m, 2n)
(v) D(1) (2, 1; α)

(vi) F(1)(4)
(vii) G(1) (3)

(viii) sl(2) (2m, 2n)
(ix) sl(2) (2m + 1, 2n)
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(x) sl(2) (2m + 1, 2n + 1)
(xi) osp(2) (2m, 2n)

(xii) sl(4) (2m + 1, 2n − 2m + 1) (n � 1, 0 � m � n, 2m �= n)
(xiii) A(4)(n, n) (n � 2, n = even).

The Dynkin diagrams of simple Lie superalgebras and affine Kac–Moody superalgebras have
been discussed in detail by various authors such as Kac [2], Yamane [13], Frappat, Sciarrino
and Sorba [4] and Van De Leur [14].

In this paper, we concentrate only on the classification of hyperbolic Kac–Moody
superalgebra through Dynkin diagrams. It consists of two sub-classes: hyperbolic Dynkin
diagrams, which revert to the Dynkin diagrams of simple Lie superalgebras or affine Kac–
Moody superalgebras upon the deletion of any vertex of the diagram, and strictly hyperbolic
Dynkin diagrams, which yield only simple Lie superalgebra Dynkin diagrams under the same
operation. The general strategy in constructing the hyperbolic Dynkin diagrams of rank
(r + 1) is as follows. First we draw all possible Lie and/or affine diagrams of rank r and
then add an extra root trying all possible lengths. Then we try connecting the new root to the
old ones in all possible ways consistent with a symmetrizable Cartan matrix. Finally, we test
the resulting diagram by removing any vertex to see whether it reduces to simple or affine
superalgebra (semi-simple algebras are also allowed). A diagram that survives the above
operation is of hyperbolic type. In the next section, we draw all possible Dynkin diagrams
of hyperbolic Kac–Moody superalgebras in the distinguished bases. One practical way to
obtain all the simple root systems (distinguished and non-distinguished) or equivalently all the
Dynkin diagrams of the given Kac–Moody superalgebra is to apply a set of transformations
to a given Dynkin diagram [4]. For example, the Weyl reflection relative to the even roots is
given by

σα(β) = β − 2(α, β)

(α, α)
α (2.4)

where α ∈ �0 and β ∈ �0 ∪ �1 with �0 and �1 being sets of even and odd roots of
the algebra, respectively. When this transformation is applied to a simple root system then
an equivalent root system is obtained with the same Dynkin diagram. Similarly, now we
can consider the set of transformations associated to the odd roots, i.e. α ∈ �1, which are
given as

for (α, α) �= 0 σα(β) = β − 2(α, β)

(α, α)
α (2.5)

for (α, α) = 0 σα(β) =
{

β + α if (α, β) �= 0

β if (α, β) = 0

σα(α) = −α. (2.6)

The transformations (2.4) and (2.5) can be lifted to an automorphism of the algebra but
transformations (2.6) cannot be lifted to an automorphism because even (odd) roots are
transformed by σα into odd (even) ones and grading is not respected. However, transformations
such as (2.6) are simply used to deduce from one simple root system all the other inequivalent
root systems. The method is as follows. We construct from any α with (α, α) = 0 the system
σα and then repeat the same operation on the obtained system until no new basis arises. It is
an easy job (at least for lower rank) to construct from a given Dynkin diagram all other ones
and it is noticed that only the roots linked to grey root, with respect to which the root system is
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Table 1. Hyperbolic Kac–Moody superalgebras of rank 3.

Dynkin Dynkin
diagrams Subalgebras diagrams Subalgebras

A
(2)
2 , sl(1, 1) ⊕ A1, A(0, 1) B(1)(0, 1), A1 ⊕ A1, B(0, 2)

A
(1)
1 , sl(1, 1) ⊕ A1, A(0, 1) B(0, 2), A2

B2, B(1, 1), A(0, 1) B(1)(0, 1), B2, B(0, 2)

B2, C(2),A(0, 1) B(0, 2), A1 ⊕ B(0, 1), A
(1)
1

C(2), A1 ⊕ sl(1, 1), A2 B(1)(0, 1), A1 ⊕ B(0, 1), A2

C(2), A1 ⊕ sl(1, 1), B2 B(1)(0, 1), A1 ⊕ B(0, 1), B2

C(2), A1 ⊕ sl(1, 1), B2 B(1)(0, 1), A1 ⊕ B(0, 1), B2

C(2), A1 ⊕ sl(1, 1),G2 B(1)(0, 1), A1 ⊕ B(0, 1),G2

C(2), A1 ⊕ sl(1, 1), A
(2)
2 B(1)(0, 1), A1 ⊕ B(0, 1),G2

C(2), A1 ⊕ sl(1, 1), A
(2)
2 B(1)(0, 1), A1 ⊕ B(0, 1), A

(2)
2

C(2), A2 B(1)(0, 1), A1 ⊕ B(0, 1), A
(2)
2

A
(2)
2 , C(2), B(1, 1) B(1)(0, 1), A2

A
(2)
2 , sl(1, 1) ⊕ A1, A(0, 1) B(0, 2), B(1)(0, 1), B2

A2, sl(1, 1) ⊕ A1, B(1, 1) B(1)(0, 1), A1 ⊕ B(0, 1), A
(1)
1

B2, sl(1, 1) ⊕ A1, B(1,1) B(1)(0, 1), A
(1)
1

B2, sl(1, 1) ⊕ A1, B(1, 1) B(1)(0, 1), A1 ⊕ A1

A
(2)
2 , sl(1, 1) ⊕ A1, B(1, 1) sl(4)(1, 3), A1 ⊕ A1

A
(2)
2 , sl(1, 1) ⊕ A1, B(1, 1) sl(4)(1, 3), A1 ⊕ B(0, 1), A2

G2, sl(1, 1) ⊕ A1, B(1, 1) sl(4)(1, 3), A1 ⊕ B(0, 1), B2

G2, sl(1, 1) ⊕ A1, B(1, 1) sl(4)(1, 3), A1 ⊕ B(0, 1), B2

B(0, 2), A1 ⊕ B(0, 1),G2 sl(4)(1, 3), A1 ⊕ B(0, 1),G2

B(0, 2), A1 ⊕ (0, 1),G2 sl(4)(1, 3), A1 ⊕ B(0, 1),G2

B(0, 2), A1 ⊕ B(0, 1), A
(2)
2 sl(4)(1, 3), A1 ⊕ B(0, 1), A

(2)
2

B(0, 2), A1 ⊕ B(0, 1), A
(2)
2 sl(4)(1, 3), A1 ⊕ B(0, 1), A

(2)
2
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Table 1. (Continued.)

Dynkin Dynkin
diagrams Subalgebras diagrams Subalgebras

sl(4)(1, 3), A
(1)
1 C(2)

sl(4)(1, 3), A2 C(2), A1 ⊕ sl(1, 1)

B(1, 1), C(2) C(2), A1 ⊕ sl(1, 1), B(1, 1)

transformed, will be affected. For example, the hyperbolic Kac–Moody superalgebra which
is represented by the Dynkin diagram

><
can also be represented by other Dynkin diagrams with inequivalent bases (distinguished and
non-distinguished), i.e.

Similarly the following diagrams show how the same hyperbolic Kac–Moody superalgebra
is represented by two Dynkin diagrams one with distinguished basis and the other with non-
distinguished basis, i.e.

Following the above procedure now we can construct all the Dynkin diagrams of a given
hyperbolic Kac–Moody superalgebra in a distinguished as well as non-distinguished root
system.

3. Dynkin diagrams of hyperbolic Kac–Moody superalgebras

Following the procedure given in the previous section we first construct the Dynkin diagrams
of hyperbolic Kac–Moody algebras of rank 2. Here we see that, similar to rank 2 hyperbolic
Kac–Moody algebras, the number of Dynkin diagrams of superalgebra is also infinite, and
deleting one of the vertices they reduce to sl(2) ◦ or sl(1, 1) ⊗ or osp(1, 2) •. Hence all
hyperbolic superalgebras of rank 2 are strictly hyperbolic and these are given by the Cartan
matrix (

0 k

−k′ 2

)
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Table 2. Hyperbolic Kac–Moody superalgebras of rank 4.

Dynkin Dynkin
diagrams Subalgebras diagrams Subalgebras

B3, sl(1, 1) ⊕ A1 ⊕ A1,

A(1, 1), A(0, 2)
 

A(2)(0, 3), A1 ⊕ B(0, 2),

A2 ⊕ A1, B(0, 3)

C3, sl(1, 1) ⊕ A1 ⊕ A1,

C(3), A(0, 2) A(2)(0, 3), B(0, 3), A3

B(2, 1), C
(1)
2 , A(1, 1)

D
(2)
3 , sl(1, 1) ⊕ B2,

A(0, 1) ⊕ A1, C(3)

C(3),D
(2)
3 , A(1, 1)

A
(2)
4 , sl(1, 1) ⊕ B2,

A(0, 1) ⊕ A1, C(3)

D(2, 1), A1⊕
A1 ⊕ A1, A(1, 1)

<
C

(1)
2 , sl(1, 1) ⊕ A1 ⊕ A1, C(3)

B(1, 2), A1 ⊕ A1 ⊕
A1, A(1, 1)

< A
(2)
4 , sl(1, 1) ⊕ A1 ⊕ A1

B(2, 1), C(3)

A(1, 1), A1 ⊕ A(0, 1),

G2 ⊕ A1,G(3)

G(3), A1 ⊕ G2,

A(0, 1) ⊕ A1, A(1, 1)

C3, sl(1, 1) ⊕ A2,

A(0, 1) ⊕ A1, B(2, 1)

G(3), A1 ⊕ G2,

C(2) ⊕ A1,D(2, 1)

A
(2)
4 , sl(1, 1) ⊕ B2,

A(0, 1) ⊕ A1, B(2, 1)

G(3), A1 ⊕ G2,

B(0, 1) ⊕ A1, B(2, 1)

C
(1)
2 , sl(1, 1) ⊕ B2,

A(0, 1) ⊕ A1, B(2, 1)

G
(1)
2 , sl(1, 1) ⊕ A2,

A(0, 1) ⊕ A1,G(3)

>

A(2)(2, 2), A1 ⊕ A1 ⊕ A1,

B(1, 2)

B(1)(0, 2), A1 ⊕ B(0, 2),

A2 ⊕ B(0, 1), B3

B(1)(1, 1), A1 ⊕ A1 ⊕ A1,

D(2, 1), B(1, 2)

B(1)(0, 2), A1 ⊕ B(0, 2),

B2 ⊕ B(0, 1), A
(2)
4

  A(2)(1, 1), A1⊕
A1 ⊕ A1,D(1, 2)

B(1)(0, 2), A1 ⊕ B(0, 2),

B2 ⊕ B(0, 1),D
(2)
3

A(4)(0, 4), A1 ⊕ A1⊕
B(0, 1), B3, B(0, 3)

A(2)(0, 3), A1 ⊕ B(0, 2),

B2 ⊕ A1, B
(1)(0, 2)

B(1)(0, 2), A1 ⊕ A1⊕
B(0, 1), C3, B(0, 3)

A(2)(0, 3), B(1)(0, 2),D
(2)
3
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Table 2. (Continued.)

Dynkin Dynkin
diagrams Subalgebras diagrams Subalgebras

A(1)(0, 1), A1 ⊕ A(0, 1),

A(0, 2)

A(4)(0, 4), A1 ⊕ B(0, 2),

B2 ⊕ B(0, 1), C
(1)
2

A(1)(0, 1), A1 ⊕ A(0, 1), C(3)
A(4)(0, 4), A1 ⊕ B(0, 2),

B2 ⊕ B(0, 1), A
(2)
4

A(1)(0, 1), A1 ⊕ A(0, 1), B(2, 1) A(2)(0, 3), A(4)(0, 4), C
(1)
2

A(0, 2), A(0, 1) ⊕ A1,

A(1)(0, 1), A(1, 1)

D(2)(2, 1), A1 ⊕ A1 ⊕ B(0, 1),

A(2)(2, 2)

B(2, 1), A(0, 1) ⊕ A1,

A(1)(0, 1), B(1, 2)

A(2)(2, 1), A1 ⊕ A1 ⊕ B(0, 1),

B(1)(1, 1),D(2)(2, 1)

C(3),A(0, 1) ⊕ A1,

A(1)(0, 1),D(2, 1)

C(2)(3), A1 ⊕ B(0, 2),

B(0, 2) ⊕ B(0, 1), A(2)(0, 3)

A(2)(0, 3), A1 ⊕ B(0, 2),

B2 ⊕ A1A
(4)(0, 4)

A(2)(0, 3), C(2)(3), A(2)(0, 3)

A(2)(0, 3), A1 ⊕ A1 ⊕ A1 A(2)(1, 1), A1 ⊕ A1 ⊕ A1

B(0, 3), A3, A
(2)(0, 3)

B(1)(1, 1), A1 ⊕ A1 ⊕ A1,

A(2)(1, 1)

A(4)(0, 4), C
(1)
3 , A(2)(0, 3)

B(1)(1, 1), A1 ⊕ A1 ⊕ A1,

A(2)(2, 2)

A(4)(0, 4), A1 ⊕ B(0, 2),

A2 ⊕ B(0, 1), C3
A(2)(2, 2), A1 ⊕ A1 ⊕ A1

where kk′ is greater than 4. The corresponding Dynkin diagram is given by

kk ′

where the thick line is equal to kk′ number of lines and the arrow can point in either or both
directions. Similarly, for rank 2 hyperbolic superalgebra another type of Cartan matrix is



Dynkin diagrams of hyperbolic Kac–Moody superalgebras 2095

Table 3. Hyperbolic Kac–Moody superalgebras of rank 5.

Dynkin Dynkin
diagrams Subalgegbras diagrams Subalgebras

A(2, 1), A1 ⊕ A1 ⊕ A2,

D(2, 1, α) ⊕
A1,D

(1)(2, 1, α)
 < F(4), A1 ⊕ B3, A(0, 1) ⊕

A2, A(1, 1) ⊕ A1,D(2, 2)

A4, sl(1, 1) ⊕ A1 ⊕ A2,

A(0, 2) ⊕ A1,D(3, 1),

A(0, 3)
F (4), A1 ⊕ B3, C(2) ⊕ A2,

D(2, 1) ⊕ A1, A
(2)(1, 3)

F4, sl(1, 1) ⊕ C3, A(0, 1) ⊕
A2, A(0, 2) ⊕ A1, B(3, 1)

F (4), A1 ⊕ B3, B(1, 1) ⊕
A2, B(1, 2) ⊕ A1, B

(1)(1, 2)

B4, sl(1, 1) ⊕ A1 ⊕ B2,

A(0, 2) ⊕ A1,D(3, 1),

B(3, 1)

B4, sl(1, 1) ⊕ A3,

A(0, 1) ⊕ A2,

C(3) ⊕ A1, F (4)

B
(1)
3 , sl(1, 1) ⊕ B3,

A(0, 1) ⊕ A1 ⊕ A1,

A(0, 3), B(3, 1)
A

(2)
6 , sl(1, 1) ⊕ C3A(0, 1) ⊕

B2, C(3) ⊕ A1, F (4)

A(2)(2, 3), A1 ⊕ B(1, 2),

A2 ⊕ A1 ⊕ A1,

A(2, 1), B(1, 3)

D
(2)
4 , sl(1, 1) ⊕ B3,

A(0, 1) ⊕ B2,

C(3) ⊕ A1, F (4)

B(1)(2, 1), A1 ⊕ A1B2,

D(2, 1) ⊕ A1,D
(1)(2, 1),

B(2, 2)

D
(2)
4 , , F (4),D(2, 2)

A(2)(2, 4), A1 ⊕ A1 ⊕ B2,

B(1, 2) ⊕ A1, A
(2)(2, 3),

B(2, 2)

F (4), C(2) ⊕ A2,

C(3) ⊕ A1, C
(1)(3)

A
(1)
4 , sl(1, 1) ⊕ A3,

A(0, 3),D(2, 1)
C(1)(3),D(2, 2),

C(2) ⊕ A1, A
(2)(1, 3)

C4, sl(1, 1) ⊕ A1 ⊕ B2,

A(0, 2) ⊕ A1,D(2, 1), C(4)

B(1)(1, 2), A1 ⊕ B(1, 2),

A2 ⊕ B(1, 1), B3 ⊕ A1,

F (4)

A(1, 2),D(3, 1), A(0, 3),

A(0, 2) ⊕ A1, A
(1)(0, 2)

A(2)(4, 1), A1 ⊕ B(2, 1),

A2 ⊕ B(1, 1), B3 ⊕ B(0, 1),

F4

D(3, 1), A(0, 2), A(0, 2) ⊕
A1, A

(2)(0, 2)

B(1)(0, 3), A1 ⊕ B(0, 3),

A2 ⊕ B(0, 2), B3⊕
B(0, 1), F4

B(1)(1, 2), A1 ⊕ B(1, 2),

A2 ⊕ B(1, 1), F (4)

A(2)(1, 3), A1 ⊕ D(2, 1),

A2 ⊕ C(2), B3 ⊕ A1, F (4)

D4, sl(1, 1) ⊕ A1⊕
A1 ⊕ A1,D(2, 1)

D(1)(2, 1), A1 ⊕ D(2, 1),

B2 ⊕ A1 ⊕ A1,D(2, 2),

A(2)(1, 3)
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Table 4. Hyperbolic Kac–Moody superalgebras of rank 6.

Dynkin diagrams Subalgebras

D5, sl(1, 1) ⊕ A4, A(0, 1) ⊕ A2 ⊕ A1, A(0, 3) ⊕ A1,D(4, 1), A(0, 4)

D(2, 3), A1 ⊕ A(1, 2), A2 ⊕ A1 ⊕ A1,D(2, 3), A(2, 2)

B
(1)
4 , sl(1, 1) ⊕ B4, A(0, 1) ⊕ A1 ⊕ B2,D(4, 1), B(1, 4)

F
(1)
4 , sl(1, 1) ⊕ F4, A(0, 1) ⊕ C3, A(0, 2) ⊕ A2, A(0, 3) ⊕ A1, B(1, 4)

A(2)(2, 5), A1 ⊕ B(2, 2), A2 ⊕ B2 ⊕ A1, A(1, 2) ⊕ A1, D(2, 3)

A(2)(0, 7), A1 ⊕ B(0, 4), A2 ⊕ A1 ⊕ B(0, 2), A4 ⊕ B(0, 1),D5, B(0, 5)

A
(2)
7 , sl(1, 1) ⊕ C4, A(0, 1) ⊕ B2 ⊕ A1, A(0, 3) ⊕ A1,D(4, 1), C(5)

E
(2)
6 , sl(1, 1) ⊕ F4, A(0, 1) ⊕ B3, A(0, 2) ⊕ A2, A(0, 3) ⊕ A1, C(5)

D
(1)
4 , sl(1, 1) ⊕ D4, A(0, 1) ⊕ A1 ⊕ A1 ⊕ A1,D(4, 1)

A(2)(2, 5), A1 ⊕ B(2, 2), B2 ⊕ A1 ⊕ B2,D(2, 2) ⊕ A1, D(1)(2, 2), B(1)(2, 2)

given by (
2 −1

−k′ 2

)
where k′ is an even integer greater than 4 with its Dynkin diagram given by

< 
k ′

.

Similarly, the Dynkin diagrams of hyperbolic Kac–Moody superalgebras of ranks 3, 4, 5
and 6 are displayed in tables 1, 2, 3 and 4, respectively, in the distinguished basis. Interestingly,
we observe that there is no hyperbolic Kac–Moody superalgebra with rank 7 or more. In the
case of hyperbolic Kac–Moody algebra, the classification halts at rank 10; this is essentially
because the maximum rank of the finite and affine exceptional series stops at E8 (rank 8) and
E8

(1) (rank 9) respectively. Thus, higher rank hyperbolic Kac–Moody algebra is not possible as
there is no affine exceptional algebra beyond E8

(1) to support it. Similarly, the maximum rank
of the exceptional Lie superalgebra is 4 and exceptional finite and affine series stop at rank 4
and 5, receptively. Now we pass from a finite Lie superalgebra to an affine one by adding
a single new light direction to root space and then from affine to hyperbolic with a second
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light-like root independent of the first. As a result the maximum allowed rank of hyperbolic
Kac–Moody superalgebra halts at 6 (running parallel with the non-super case). This is indeed
the case when we check using a case-by-case approach. In the case of hyperbolic Kac–Moody
algebra, we see that there is no strictly hyperbolic case with rank more than 4, but in the case
of hyperbolic superalgebra there is no such restriction.

4. Conclusion

In conclusion we would like to add a few remarks concerning the Dynkin diagrams of
hyperbolic Kac–Moody superalgebras so obtained. These diagrams themselves can be
exploited to serve various purposes. For example, they can be used to determine the maximal
regular subalgebras by deleting arbitrarily one of the vertices. From the Dynkin diagrams of
an algebra, we can easily draw the Satake super diagrams [9] of the corresponding algebras,
which can be used to determine the real forms and associated symmetric super spaces. Such
studies are currently in progress. As a continuation of this paper, next we have shown how
the involutive automorphisms obtained from the Satake super diagrams are used to furnish a
general treatment of Iwasawa decomposition [10–12] of these algebras with specific examples.
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